
Exceptions & Interrupts
Exceptions are a generalization of interrupts:

• Interrupts are generated by hardware devices
• Software exceptions are generated by software instructions

Exceptions refer to both hardware interrupts and software-generated exceptions.
• Exceptions can occur at any time
• When it occurs, an exception handler is run
• Exception handler will save registers on stack, execute routine, restore registers.

Exception types

• Divide-by-zero (not in Nios)
• Illegal memory address (not in Nios)
• Unaligned memory address (not in Nios)
• Overflow (not in Nios)
• Illegal instruction (not in Nios)
• Unimplemented instruction
• Trap instruction
• Break instruction
• Interrupt – a hardware exception triggered when “interrupt request” pin set to 1

Nios II CPU Interrupt Logic

Registers
Normal ones: r0 to r31

• r31 == ra return address
• r29 == ea exception return address
• r24 == et exception temporary

Special control registers: ctl0 to ctl31

• ctl0 == status bit0 of status == PIE (processor interrupt enable)
• ctl1 == estatus
• ctl3 == ienable In C, enableInterrupts(); // sets the PIE bit
• ctl4 == ipending disableInterrupts(); // clears the PIE bit

Can only access ctl0 to ctl31 using special instructions rdctl and wrctl, e.g.:

• rdctl r24, ctl0 = rdctl et, status /* read PIE status */
• rdctl r8, ctl4 = rdctl r8, ipending /* read pending interrupts */
• wrctl ctl0, r0 = wrctl status, zero /* disableInterrupts();*/
• wrctl ctl3, r13 = wrctl ienable, r13 /* enable individual irq */

data-dependent exceptions

L35-1 EECE 259 Shorthand Notes

instruction-dependent exceptions

Nios II Exception Process
When an exception occurs, the CPU does not execute the current instruction. Instead it:

1. copy status to estatus
2. clear PIE bit (to 0) to disable further interruptions
3. modify r29 == ea to hold return address to instruction after the one being

interrupted (at PC+4)
4. start running exception handler at address 0x0000 0020

When done, the exception handler must use the eret instruction to:
5. Copy estatus back to status
6. Jump to address in ea to resume the main program

After finishing an exception, Nios II normally skips past the instruction that caused the
exception. This is how it makes forward progress to get past “trap” or unimplemented
“multiply” instructions. If it didn’t do this, the same instruction would be repeated,
triggering another exception and creating an infinite loop.

What happens on return from a hardware interrupt? To which instruction does it resume?

Your Program
Your program must include three major components:

A) exception handler
B) interrupt service routines (ISR)
C) main program setup routines

(note: there may not be enough time to cover the points below in one lecture)

A) Your exception handler must:
1. Save registers on the stack
2. Determine the cause of the exception according to the priority order
3. For hardware interrupts, adjust the return address in ea by subtracting 4
4. Call the appropriate interrupt service routine or exception service routine

• Loop to call the ISR associated for each hardware IRQ in ipending
5. Restore registers from the stack
6. Return to the main program using the instruction eret

B) Your interrupt service routine must:
1. Clear the cause of the interrupt so it will not occur again (eg, tell the device to

stop sending the interrupt)
2. Do the appropriate action for the interrupt (eg, read character from serial port)
3. Change the state of the system (ie, modify memory to alter behaviour of system)
4. Return to the exception handler using ret

C) Your main program must:
1. Place the exception handler in memory at address 0x00000020.
2. Enable the use of the stack
3. Specifically enable device to send interrupts (eg: ps2, timer)
4. Specifically enable CPU to receive interrupts from the device (ienable)
5. Enable CPU interrupts by setting PIE bit to 1 (i.e. set bit 0 in status to a 1)

L35-2

